Studies on Heterocyclic Analogues of Azulene. Part 2. ${ }^{1}$ Cycloaddition Reactions of Aza-analogues of Azulene with Dimethyl Acetylenedicarboxylate: Intermediacy of a 1,8-Dipolar Species

By Noritaka Abe, Yasuko Tanaka, and Tarozaemon Nishiwaki,* Department of Chemistry, Yamaguchi University, Yamaguchi City 753, Japan
Cyclohepta[b]pyrroles (1) and cycloheptimidazole (2) react with dimethyl acetylenedicarboxylate to give $2 \mathrm{H}-2 \mathrm{a}-$ azacyclopent[cd]azulenes (3) and 3 H -2a-azacyclopenta[ef]heptalenes (4), and $3 \mathrm{H}-1$,2a-diazacyclopenta[ef]heptalene (5), respectively, in low to moderate yields. The formation of these products is explained in terms of 1,8-dipolar cycloaddition reactions.

Although 1,3- ${ }^{2}$ and 1,4-dipolar cycloaddition reactions ${ }^{3}$ have been widely studied, more extended dipolar cycloaddition reactions are little known; only a few papers record $1,5-\mathbf{5}^{4} 1,7-\mathbf{D}^{5}$ and 1,11-dipolar cycloadditions. ${ }^{4, \dagger}$ In the light of successful cyclisations of azulene ${ }^{6 a}$ aceheptylene, ${ }^{6 b}$ and a number of pyrroles ${ }^{7 a}$ and azoles ${ }^{7 b}$ with acetylenic compounds, we envisaged that l-azaazulene (cyclohepta[b]pyrrole) (1) and 1,3-diaza-azulene (cycloheptimidazole) (2) might produce interesting vinylogous dipolar systems on reaction with acetylenes.

Treatment of ethyl 2 -chloro-l-aza-azulene-3-carboxylate (la) with an excess of dimethyl acetylenedicarboxylate in benzene under reflux gave two products. One

1 H singlet at $\delta 5.78[\mathrm{C}(3) \mathrm{H}]$ in addition to signals for two methyl groups and one ethyl group; assignment of the $\delta 7.59$ signal to the $\mathrm{C}(8)$ proton was made by reference to the spectrum of the aza-azulene (la), in which the $\mathrm{C}(4)$ proton signal is observed at lowest field.

The other product (14%) was the $1: 2$ adduct. Comparison of the ${ }^{13} \mathrm{C}$ n.m.r. spectrum of this adduct with that of the aza-azulene (la) and off-resonance decoupling (Table) revealed that of the thirteen ring carbon atoms only one gives a resonance assignable to an $s p^{3}$ carbon atom; thus ring closure took place at the seven-membered ring of compound (la) with concomitant loss of a hydrogen atom. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum allows the

${ }^{13} \mathrm{C}$ Chemical shifts of the compounds (la), (1b), (4a), (4b), and (5)								
Carbon	(la)	(lb)	(4a)		(4b)		(5)	
1			111.3 s		109.6d			
2	158.9 s	157.9 s	143.0 s		143.9 s		140.9d	
3	111.9 s	112.2d	55.5 d		55.7 d		57.2 d	
3 a	146.9 s	147.2 s						
4	137.9d	135.4 d	118.8 s		116.3 s		116.1s	
5	133.0 d	130.0 d	$126.5 \mathrm{~s}^{\text {a }}$		$124.4 \mathrm{~s}^{\text {b }}$		131.2 s	
6	137.0d	134.5d	$125.9 \mathrm{~s}^{\text {a }}$		$122.7 \mathrm{~s}^{\text {b }}$		125.5 s	
6a			$126.5 \mathrm{~s}^{\text {a }}$		127.7s		140.9 s	
7	133.0 d	130.3 d	127.2d		126.1d		127.4d	
8	139.5 d	137.6d	128.6d		129.5 d		131.2d	
8 a	156.7s	156.1s						
9			127.8 d		128.7d		130.2 d	
10			131.2 d		131.1d		132.2d	
10a			129.8 s		131.1s		144.2 s	
10b			141.5 s		142.2 s		145.3 s	
$\mathrm{C}=\mathrm{O}$	162.9s		162.6 s	$164.7 \mathrm{~s}$	165.5 s	167.1s	165.4 s	167.2s
			166.2 s	$166.5 \mathrm{~s}$	167.1s	167.4 s	167.2 s	167.2 s
OMe			52.2 q	52.9 q	52.1 q	52.7 q	52.7 q	53.4 q
			52.9 q	53.5q	52.7 q	53.4 q	53.4 q	53.7 q
OCH_{2}	60.6 t		60.6 t					
Me	14.3q		14.2q					
		${ }^{\text {a,b }}$	nments	y be rev				

(2%) was the $1: 1$ adduct, as revealed by elemental analysis. The structure (3a) was assigned on the basis of the ${ }^{1} \mathrm{H}$ n.m.r. spectrum, which has two 1 H doublets at $\delta 7.45[\mathrm{C}(5) \mathrm{H}]$ and $7.59[\mathrm{C}(8) \mathrm{H}](J 11 \mathrm{~Hz})$ and two 1 H double doublets at $\delta 6.30[\mathrm{C}(6) \mathrm{H}]$ and $6.69[\mathrm{C}(7) \mathrm{H}]$ ($J \mathrm{ll}$ and 9 Hz) assignable to four aromatic protons, a

[^0]structure (4a) to be assigned, with the $C(7)$ and $C(10)$ proton signals appearing as double multiplets at $\delta 6.83$ and $7.83(J 10 \mathrm{~Hz})$, the $\mathrm{C}(8)$ and $\mathrm{C}(9)$ proton signals as double double doublets at $\delta 6.50$ and $6.57(J 10,7.5$ and 4 Hz), and the $\mathrm{C}(3)$ proton signal at $\delta 6.80$.

2-Chloro-l-aza-azulene (lb) similarly reacts with the

[^1]acetylene producing a $1: 2$ adduct (4b) and an unstable $1: 1$ adduct (3 b), whereas 1,3-diaza-azulene (2) reacts

(1)

(2)
a; $R=\mathrm{CO}_{2} \mathrm{Et}$ b; $R=H$

(3)
$a ; R=\mathrm{CO}_{2} E t$
b; $R=H$

(4)

(5)
$a ; R=\mathrm{CO}_{2} E t$
b; $R=H$
with the acetylene at room temperature to afford a $1: 2$ adduct only, whose structure was established as (5) from ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. spectra (Table).

In these reactions, the electrophilic acetylene attacks the ring nitrogen, to give a dipolar species (6) whose

sextet formulation bears a positive and a negative charge at the 1 - and 8 -positions of the formal azatetraene system; hence the species may be regarded as 1,8 dipolar. Cycloaddition of this zwitterion followed by a hydrogen shift produces compound (3), whereas cycloaddition with a further molecule of dimethyl acetylenedicarboxylate followed by hydrogen shift leads to compound (4) or (5).

EXPERIMENTAL

M.p.s were determined for samples in capillary tubes unless otherwise stated. ${ }^{1}$ H N.m.r. spectra were taken with a Varian HA- 100 spectrometer at 100 MHz and ${ }^{13} \mathrm{C}$ n.m.r. spectra with a Hitachi R-26 spectrometer (solutions in CDCl_{3} with tetramethylsilane as internal standard). U.v. spectra were measured for solutions in chloroform and i.r. spectra for Nujol mulls. Chromatography was performed on Kieselgel 60.

Reaction of Ethyl 2-Chloro-1-aza-azulene-3-carboxylate (1a) with Dimethyl Acetylenedicarboxylate.-A mixture of compound (la) ${ }^{8}(2.00 \mathrm{~g})$ and the acetylene (4.00 g) in benzene $(40 \mathrm{ml})$ was heated under reflux for 9 h . The solvent was removed under reduced pressure and the residue chromatographed with benzene to give 1 -ethyl 3,4-dimethyl 2 -chloro-
${ }^{8}$ T. Nozoe, S. Seto, S. Matsumura, and T. Terasawa, Chem. and Ind., 1954, 1357.

3H-2a-azacyclopent[cd]azulene-1,3,4-tricarboxylate
(3a)
($0.056 \mathrm{~g}, 2 \%$), which crystallised from cyclohexane as orange prisms, m.p. 177-178 ${ }^{\circ}$ (Found: C, 57.1; H, 4.4; $\mathrm{N}, 3.8 . \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClNO}_{6}$ requires $\left.\mathrm{C}, 57.2 ; \mathrm{H}, 4.3 ; \mathrm{N}, 3.7 \%\right)$, $\lambda_{\text {max. }} 255(\log \varepsilon 4.51), 273$ (4.15), 285sh (4.03), 372 (4.17), 392 (4.13), 416 (3.70), 443 (3.74), 472 (3.71), 507 (3.53), and $545 \mathrm{~nm}(3.06), \nu_{\text {max. }} 1740,1690$, and $1670 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$, $\delta 1.42(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}), 3.78(3 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}), 4.37(2 \mathrm{H}$, q, $J 7 \mathrm{~Hz}), 5.78(1 \mathrm{H}, \mathrm{s}), 6.30(1 \mathrm{H}, \mathrm{dd}, J 11$ and 9 Hz$)$, $6.69(1 \mathrm{H}, \mathrm{dd}, J 11$ and 9 Hz$), 7.45(1 \mathrm{H}, \mathrm{d}, J 11 \mathrm{~Hz})$, and $7.59(1 \mathrm{H}, \mathrm{d}, J 11 \mathrm{~Hz})$. Elution with benzene-chloroform ($1: 1$) gave the starting material (0.83 g) and elution with benzene-chloroform ($1: 2$) yielded 1 -ethyl $3,4,5,6$-tetramethyl 2-chloro-3H-2a-azacyclopenta[ef]heptalene-1,3,4,5,6-penta-
carboxylate (4 a) ($0.61 \mathrm{~g}, 14 \%$), which crystallised from cyclohexane as red prisms, m.p. 133-134 (Found: C, $55.2 ; \mathrm{H}, 4.3 ; \mathrm{Cl}, 7.2 ; \mathrm{N}, 2.7 . \mathrm{C}_{24} \mathrm{H}_{22} \mathrm{ClNO}_{10}$ requires C , $55.4 ; \mathrm{H}, 4.3 ; \mathrm{Cl}, 6.8 ; \mathrm{N}, 2.7 \%)$, $\lambda_{\text {max. }} 257 \mathrm{sh}(\log \varepsilon 4.37)$ and $448 \mathrm{~nm}(3.85), \nu_{\max } 1750,1730,1712$, and $1693 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{O}), \delta 1.38(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}), 3.76(3 \mathrm{H}, \mathrm{s}), 3.77(3 \mathrm{H}, \mathrm{s})$, $3.82(3 \mathrm{H}, \mathrm{s}), 3.83(3 \mathrm{H}, \mathrm{s}), 4.40(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}), 6.50(1 \mathrm{H}$, ddd, $J 10,7.5$, and 4 Hz), $6.57(1 \mathrm{H}, \mathrm{ddd}, J 10.5,7.5$, and $4 \mathrm{~Hz}), 6.80(1 \mathrm{H}, \mathrm{s}), 6.83(1 \mathrm{H}, \mathrm{dm}, J 10 \mathrm{~Hz})$, and $7.83(1 \mathrm{H}$, ${ }^{\mathrm{dm}}, J 10.5 \mathrm{~Hz}$).

Reaction of 2-Chloro-1-aza-azutlene (1b) with Dimethyl Acetylenedicarboxylate.-A mixture of compound (1b) ${ }^{8}$ $(1.00 \mathrm{~g})$ and the acetylene $(4.00 \mathrm{~g})$ in benzene (80 ml) was heated under reflux for 5 h and worked up as above. Elution with benzene afforded an oil (0.12 g), which partly solidified on trituration with petroleum (b.p. $30-60^{\circ} \mathrm{C}$) to afford dimethyl 2-chloro-3H-2a-azacyclopent [cd]azulene-3,4dicarboxylate (3 b) ($0.06 \mathrm{~g}, 3 \%$). Repeated recrystallisations from petroleum (b.p. $30-60^{\circ} \mathrm{C}$)-dichloromethane gave the pure compound as red prisms (0.005 g), m.p. $155-156^{\circ}$ (hot-stage) (Found: m / e 307.042. $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClNO}_{4}$ requires $M, 307.042$), $\lambda_{\text {max }} 255(\log \varepsilon 4.17), 273$ (3.83), 283 (3.74), 373 (3.79), 394 (3.76), 415 (3.42), 431 (3.45), 459 (3.41), 492 (3.23), and $530 \mathrm{~nm}(2.78), \nu_{\text {max. }} 1727$ and $1690 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{O}), \delta 3.75(3 \mathrm{H}, \mathrm{s}), 3.79(3 \mathrm{H}, \mathrm{s}), 5.77(1 \mathrm{H}, \mathrm{s}), 6.17(1 \mathrm{H}$, dd, $J 11$ and 9 Hz$), 6.24(1 \mathrm{H}, \mathrm{s}), 6.65(1 \mathrm{H}, \mathrm{dd}, J 12$ and 9 $\mathrm{Hz}), 6.81(1 \mathrm{H}, \mathrm{d}, J 11 \mathrm{~Hz})$, and $7.41(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz})$. The benzene-chloroform ($2: 1$) eluate gave the starting material $(0.35 \mathrm{~g})$, and elution with benzene-chloroform (1:3) afforded tetramethyl 2-chioro-3H-2a-azacyclopenta-[ef]heptalene-3,4,5,6-tetracarboxylate (4b) (0.82 g, 30\%), which crystallised from cyclohexane as red prisms, m.p. $164-165^{\circ}$ (Found: C, $56.1 ; \mathrm{H}, 4.0 ; \mathrm{Cl}, 8.1 ; \mathrm{N}, 2.8 . \mathrm{C}_{21^{-}}$ $\mathrm{H}_{18} \mathrm{ClNO}_{8}$ requires C, $56.3 ; \mathrm{H}, 4.05 ; \mathrm{Cl}, 7.9 ; \mathrm{N}, 3.1 \%$), $\lambda_{\text {max. }} 320(\log \varepsilon 3.56)$ and $467 \mathrm{~nm}(3.76), \nu_{\text {max. }} 1743,1725 \mathrm{sh}$, 1715 , and $1690 \mathrm{sh} \mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O}), \delta 3.72(3 \mathrm{H}, \mathrm{s}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, $3.79(3 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}), 6.28(1 \mathrm{H}$, ddd, $J 12,8$, and 4.5 $\mathrm{Hz}), 6.38(1 \mathrm{H}, \mathrm{s}), 6.43(1 \mathrm{H}$, ddd, $J 11.5,8$, and 4 Hz$)$, $6.61(1 \mathrm{H}, \mathrm{s}), 6.78(1 \mathrm{H}, \mathrm{dm}, J 12 \mathrm{~Hz})$, and $6.79(1 \mathrm{H}, \mathrm{dm}$, $J 11.5 \mathrm{~Hz})$.

Reaction of 1,3-Diaza-azulene (2) with Dimethyl Acetyl-enedicarboxylate.-A mixture of compound (2) ${ }^{9}(1.25 \mathrm{~g})$ and the acetylene (5.50 g) in benzene (70 ml) was stirred at room temperature for 5 h . The dark red solution was evaporated under reduced pressure; chromatography of the residue with benzene-chloroform (1:8) gave tetramethyl 3H-1,2a-diazacyclopenta[ef]heptalene-3,4,5,6-tetracarboxylate (5) $(0.53 \mathrm{~g}, 14 \%)$, which crystallised from cyclohexane as red prisms, m.p. $197-198^{\circ}$ (Found: C, 57.9; H, 4.4; N,
${ }^{9}$ T. Nozoe, T. Mukai, and I. Murata, J. Amer. Chem. Soc., 1954, 76, 3352.
6.45. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{8}$ requires $\mathrm{C}, 58.0 ; \mathrm{H}, 4.4 ; \mathrm{N}, 6.8 \%$), When this reaction was carried out in benzene under $\lambda_{\text {max. }} 280(\log \varepsilon 4.01)$ and $450 \mathrm{~nm}(3.99), \nu_{\text {max. }} 1742,1727$, 1715 , and $1705 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), \delta 3.76(3 \mathrm{H}, \mathrm{s}), 3.78(3 \mathrm{H}, \mathrm{s})$, $3.82(3 \mathrm{H}, \mathrm{s}), 3.83(3 \mathrm{H}, \mathrm{s}), 6.27(1 \mathrm{H}, \mathrm{s}), 6.48(1 \mathrm{H}, \mathrm{ddd}, J 11$, 6 , and 2 Hz$), 6.58(1 \mathrm{H}$, ddd, $J 12,6$, and 2 Hz$), 6.92(1 \mathrm{H}$, $\mathrm{dm}, J 12 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{dm}, J 11 \mathrm{~Hz})$, and $7.71(1 \mathrm{H}, \mathrm{s})$. Elution with chloroform gave the starting material (0.18 g).
reflux for 20 min , the yield of the compound (5) was 2%.

We thank Drs. T. Morita (Tohoku University) and A. Mori (Kyushu University) for n.m.r. spectral determinations.
[7/1219 Received, 11th July, 1977]

[^0]: \dagger For the definition of cycloaddition we follow Huisgen ${ }^{2 b}$ rather than Reimlinger. ${ }^{4 a}$
 ${ }^{1}$ Part 1, N. Abe, Heterocycles, 1976, 4, 221.
 ${ }^{2}$ R. Huisgen, Angew. Chem., (a) 1963, 75, 604; (b) 1968, 80, 329.
 ${ }^{3}$ R. Huisgen, Topics Heterocyclic Chem., 1969, 223.
 ${ }^{4}$ (a) H. Reimlinger, Chem. Ber., 1970, 103, 1900; (b) S. F. Gait, M. J. Rance, C. W. Rees, R. W. Stephenson, and R. C. Storr, J.C.S. Perkin I, 1975, 556.

[^1]: ${ }_{5}$ D. J. Cram and R. D. Partos, J. Amer. Chem. Soc., 1963, 85, 1273.
 ${ }^{6}$ (a) K. Hafner, H. Diehl, and H. U. Süss, Angew. Chem. Internat. Edn., 1976, 15, 104; (b) K. Hafner, H. Diehl, and W. Richarz, ibid., p. 108.
 ${ }^{7}$ (a) R. M. Acheson, Adv. Heterocyclic Chem., 1963, 1, 125; (b) P. J. Abott, R. M. Acheson, U. Eisner, D. J. Watkin, and J. R. Carruthers, J.C.S. Perkin $I, 1976,1269$, and previous papers from this group.

